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Quadratic Programming
A Variant of the Wolfe-Markowitz Algorithms

Although a convex quadratic objective can be treated by general convex
programming, and also cen be reduced to the convex separable case by a change
c¢f variables, the linear nature of its partial derivatives has given rise to
an elegant theory important in its own light. It is doubtful at this writing

that full potentiality of this theory has been realized.

Barankin and Dorfman (1958)* first pointed cut that if the linear
Lagrangian conditions of optimality were combined with those of the original
system, the optimum solution was & basic solution in the enlarged system with
the property that only one of certain pairs of variables were in the basic set.
Markowitz (1956), on the other hand, showed that it was possible to modify the
enlarged system and then parametrically generate a class of basic solutions
with the above special property which converges to the optimum in a finite
number of iterations. Finally, Wolfe (1959) proved, in an elegant way, that
an easy way to do this is to modify the simplex algorithm so as not to allow
& variasble to enter the basic set if jts "complementary" variable is already
in the basic set. Thus by modifying a few instructions in a simplex code for
linear programs it was possible to solve a convex quadratic program! We shall
present here a variant of Wolfe's procedure. The chief difference is a tighter
selection rule that results in a monotonically decreasing objective instead of
& decreasing measure of "dual" infeasibility. It is believed to be computa-
tionally more efficient because there can be a greater decrease in the value

of the quadraetic function in each iteration.

* The name and bracketed date refers to references at the end of the report.
Other references on quadratic programs are listed there also.




Quadratic progrems cen arise in several ways. Wolfe lists four in his
paper &s follows:
Regression: To find the best least-square fit to given data, where certain
parameters are known a priori to satisfy inequality constraints.

Efficient Production: Maximization of profiv, assuming linear production

functions and linearly varying marginal costs; see Dorfman (1951).

Minimum Variance: To find the solution of a linear program with variable

cost coefficients which will have given expected costs and minimum
variance; see Markowitz (1959).

Convex Programming: To find the minimum of a general convex function under

linear constraints and quadratic approximation; see White, Johnson

and Dantzig (1958).

PRELIMINARIES :
Before stating the problem, let us note that every quadratic form can be

conveniently expressed in terms of a symmetric matrix associated with its

coefficients. For example, for n = 3 variables,

(1) Qx)

cx2+c x2+c x2+2c X. + 2C. _X. X, + 2¢C
3 12%1%

11%1 + Cop¥p *+ C33 23%p%3 * =01 3% %3
f_cll o ©13| .
T
=[xy, x5 x50 Jey, ey s x| = X0x
Cl C2 [ X
i 3 3 55. L 3

where T stands for transpose.

Definition: A quadratic form is called positive definite if xTCx >0

for all x # O; it is called positive semi-definite if xTCx > O for all x.
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PROBLEM: Find x = (xl, X5

(2) Ax = b )

xTCx

Q(X) P)

5., xn) > 0 and Min Q(x) satisfying

*
where Q(x) 1is positive semi-definite.

A=[a,], i=12,2, .vo, m

Q
n
r~t
[
=
.
| -
e
b
-
[ %
|

=1, 2, ..., I

*
Kuhn-Tucker Optimality Conditions: Let Aj’ C

* th
denote the j column of

A and C and let

T

THEOREM 1l: A solution x xo

(4) A-Xo:b, x° >0,
T o 0

(5) yj = Cyx - mA; 30,
o

(6) vy r %Xy = 0

o T o
1) Qx) - Qi:°) = 2 le (%

n

j=1

J

(m = M5 Tpy wees nﬁ) .

is minimal if there exists a T = ﬂp s

y=y° such that, for j=1, 2, ..., n,

o o
(8) Alx - x) = Z AJ(xJ—xJ) =

(Primal feasibility),

("Dual" feasibility),

(Complementarity) .

PROOF: Rewrite Q(x) in the form

)(xj—xg) + (x - xO)T c(x - x°) .

In general, let x and x° be any solutions satisfying Ax = b, then

O .

* f desired the theory is easily extended to include the addition of linear terms
o §T%I°

*% Theorem 1 is, as indicated earlier, well known; we reprove 1t because it
sets the stage for the development that follows.
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Multiplying on the left by or° and subtracting from (7) yields, for any

Ax = b, Ax° = b,

(9) A - o) =2 ) (03x% - m0R,) (xyx9) + (x - %) c(x - x°)
J=1
=2 2{: yj (xj—xg) + (x - xo)T c(x - x°) ,
J=1

where y? is defined by (3) for x = x°. If in addition complementarity holds,

e} e}

Xy yJ = 0, then (9) simplifies to

(10) a0 - e =2 ) x4 (- O elx - 2)

o
30
yJ*

. . . o} o}
Finally, if primal and dual feasibility holds so that xj 2,0, xJ 2,0, yJ 2,0,

then all terms in (10) are non-negative, therefore Q(x) Z,Q(xo).

Improving a Non-Optimal Solution. Consider the system

(11) Ax =b , X>/0,

Cx - A - Iy s (In: Identity Matrix),

n
(@]

where xTCx is assumed to be positive semi-definite. ILet xo, ﬂp, yo be a basic

feasible solution associated with a basic set with the complementarity property;

namely, for each j either xJ or yj, but not both, are in the basic set. We

shall assume further that the right hand side has been perturbed to insure that

all basic solutions are nondegenerate. Note that neither 7 nor y are sign

restricted; only x > O is required for a "feasible" solution to (11); an optimal

solution will have been obtained if yJ 2,0 and xj . yj = 0 holds for all .

k-




THEOREM 2: If a basis is complementary and yg < 0, then any increase of the

nonbasic variable X s with adjustment of the basic variables, generates a class of

solutions x,m’, y’, such that xTCx decreases as long as yé < 0.

PROOF: Let x be any solution in the class generated by Xy and let x'be
generated by x_ = xé. From (9), Q(x) - Q(x) = 2y; (xs-xg) + (x - x’)T C(x - x7)
since for all j # s either xJ or yJ = 0. The adjusted values of the basic variables
are linear functions of x_, hence it follows that x - x’ (xs-xs)v where v is a
constant vector. Hence, Q(x) - Q(x’) = (x -x’) [éy +(x X v Cv)] and it is clear
that if y < 0, the right hand side is negative for sufficiently small (x —x’) > 0.,
Moreover for Q(x) to decrease with an increase of X, > O from x’ to xg it must be

accompanied by ys< yé/because x") - Q(x)= 2(xs - xé)y; + (xé’ ’)2v Cv =

2T T T
_ "o LNy "no_ o/ oY = "o_ o
= 2(xs xs)ys (xx xs) v Cv whence 2(ys ys) (x x! v Cv >, 0. But v CwWO
because VTCV = O implies for positive semi-definite forms Cv = 0 and Q(x«) Q(x) =

= 2(xg - xé)x'Cv + (xg - xé) vCv = O whereas Q(x) - Q(x/) < 0; hence yé’) yé.

THEOREM 3: If X, drops as basic variable, introduction of Y, either causes

xTCx to decrease (and X, ory, to be dropped) or causes xTCx to stay fixed and
1

Y to be dropped. If X, is dropped, this theorem may be reapplied; on the other
1

hand, 1if ys drops, either initially or upon increase of y_, Theorem 2 may be re-

applied.

PROOF: Our proof is completely general; however, for convenience we will
illustrate it on system (13) below. Let us suppose we had on some cycle a basis

B and a basic feasiblc complementary solution with basic variables x X5

l) 5)

X)s Ty, My, Y- &nd the value of y_ = y? < 0. In this casc, x_. becomes a new
b» 712 Yo Vg b > P

basic variable and we assume that xh dropped out to form a new basis B/. In (15),

the dot . indicates a colum in the basis B and * indicates that the column P5

assoclated with x5 is a candidate to replace a vector of the basis B. ILet the

representation of P5 in terms of the columns of the basis B be:

(12) Plal+P2a2+P50z§+Phau+P6aé+Pa +Pa. = P

T ) p)

-5=




where P. is the Vs column in (13).

5
(13)
xl x2 x5 X L x5 1rl ‘rr2 yl y2 Y 3 Y " y5 Const.
8 10 Bz By 85 o,
81 8p 83 By B o,
°3 %2 13 Cuy S5 %11 %1 | H 9
¢ %o %3 Sau S5 | B2 %2 = 0
15 %3 ®33 3 %3 | %13 %23 -l 0
©u S Ssy o Cun Cus {Fin %ou -1 0
. . - 0
cl5 c% c55 c1+b cbb za.l5 a25 1
* . . . basis B
. . . * N basis B’

Let us now consider the representation of the Yy column, ?u, in terms of

the basis B where )\,i are the welghts on columns Pi assoclated with basic X,

us and 'X'i are the weights on columns ?i associated with basic Yy s

/ S D
(1lka) ?\1+P2)\2+P7\ +P57\5+P7\ +P77\_(+P5}\5— P
We wish to show that 7\'5 £ 0. If 7\; < 0, it is clear that an increase of Yy
will cause xb to increase and xTCx to decrease as long as the value of y5 <0
in the basic solution. On the other hand, if 7\15 = 0, we shall show that y5

will drop with no change in xTCx.

Let [7\1] be the representation of §1+ in terms of the prior basis B,

(i.e., before the introduction of x. in place of xu),

p)

ol

(14v) Pl7\l + B, + P57\5 + PIJ‘LL + P67\b + PY)\7 + P57\5 = P,
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Then, setting A = ()1, %2, k}, xh), the first six rows of this representation

yields (15) and (16)

T _

(15) [a]] 8, 85 alh] A = 0
T -

[aEl 855 a25 a2h] A = 0

(16) °11 %12 %13 Sy " 851 0
‘2 %22 23 oy N 22| ANt % M= |°
13 %23 °33 s %13 iy 0
Su Can Csn o Cuy 214 By -1

Multiplying (16) by A on the left and denoting the square matrix by Ch’ yields,

by (15), kChkT = -Rh. Since kCh%¢ is positive semi-definite (Ch is a principal

minor of C), )ChkT >0 and A O follows.

Case )g < 0: Let us assunme Kh < O. We observe that in the representation

(12) of P. in terms of B, the weight @) is positive (since x), decreased when x

5
increased). By eliminating P, from (12) and (1l4) to obtain (14%), and noting

5

i lows tha+ N = here A h
a, >0, N, <0, it follows that A kh/ah < O (where A. is the weight on Py in

the representation of Eh in terams of B'). But Xé < O implies *hat *the introduc-
4

tion of Yy into the basic set for B' will increase X Morezover, we may adopt

7

the point of view, for the purpose of thz proof, tha% it is the increase in x

5

that is "causing" the increase in Iy (instead of the other way around), so that

we are, in fact, repeating the situation just cozgidered of increasing x_. and

5

adjusting the other "basic" variables, except here Yy is in the basic set in-

stead of ). It follows, therefore, as before, that an increase in x_ decreases

5

xTCx as long as y5 remains negative in value in the adjustment of the basic

solution by the increase of x

5°




Case k; = 0: Let us now assume Kh = 0. We may set ki = k; because the

representation of ﬁh is the same, whether in terms of B or B'; hence, )é = O

In this case XCh%? = —)%: 0O; therefore, Ch%? = O by a well known property of

semi-definite forms. In this case A = O must hold because A 4 O implies a

dependence of the first four columns of (15) and (16) which is impossible be-
cause then the square array of coefficients of (15) and (16), and in turn B,

would be singular.

Setting A = O in (16) and noting that at leas* one A, must be nonzero,i=l,...,7,

we see that there is a dependence between the rows of [aiJ] for those columns

By forming a linear combina-

XJ associated with the basic set, other than xs.
tion of the rows of A, we could therefore rewrite (for the purpose of the

proof) the system so that top row has zero coefficients for these xj. Thus

(17)
/ ! ~
xl x2 x5 xh xp ﬂi ﬂ2 yl y2 35 yL+ y5 Const.
0 0 o a' a iy
14 215 1
821 %o B3 By, By b,
c c c c c 0 a -1 Q
1 %12 13 1y S5 2
‘12 %22 %3 Sy a5 | O &y -1 v
13 %23 C°35 34 S35 | O 8y - 0
/
10 Soy Sz Cuy Sy | B1y By -1 o
/
c15 c25 c55 cl‘5 c75 a15 a25 -1 0
. . . . * .




) ‘ . / .
Naw, a £ U because B was noasingular and a. . 4 O heceuse the same 1s

> Th 1 E)
A L

~ 13 . . . . .
nrue for B'. It is also obvious that the signs of a ere the same

and d:

!
4

for Xy, to decrease when XS inereaser., Note now that the ﬂi column is repro-

seatebliz as & lipear combination of the aegative anit colwms of 7, , y5 (and,
L

in a rwore general case than the example, the obther negative unit columns of

. . " . 3 . ! o o ! - T 4
the baslic ;ﬁ). Moreover it is clear that since &%AvdJQ & have the same sign,
5 ot "

inerensing I Trom its zero value vesults in & poaitive casnie i 75-

Since the ¥y, are not siga rostrloved, ¥y ean e increased whil yo is
s

. Y LY N . N it B o FJ e
oronped oLL o the bagic set at value zero betause all ¥, valawrs are wnatfected.
J

Hense, in thos saift of basis there is no change in she value of x7Cx; however,

the inteadussion of vy, into tae basic set and deopding of v, gives rige to new
ot
bagic seh that satisies the compliementarity proverty. we =y thuws opply egain

m
LHEorem 2 LI recace 4 Gas

oH & APRET O S3G0n T .

2R L. Initlece: fev AxT o= b be oa oasic Jeasiil noll,lon IOL

oA 20, MR Daslo vaslables R P

.t ’ v . e .
(YRR EAWAME AL coploil; o) Lpese X , L0 U e lub JJ
4 L

. : ey 3 L. = RN | = 4
e aekil L) MLILC AL, MG (0] e e T, (‘D7 oeoel Vicient
o

menteis Lo wnasingLaar. )

s 7 T gy | oo . M ) - TP . Y
SPEr 20 For the valucs of 50 ol the bagie solivbaul, clebaaies

Min N A SRV ik 1r ’~"v, A ] _,"‘7' I D .'

Iy 0 dpbroduce into basic set x_; 10 i drovs foom

3

basic seb, repeat Biep 2. Otherwlize LI x ) drops,

SEREON. 0 Tnteoduce 7 into basic set. Iy drops, seturnn o Soep 2;

otheraise, 1T some x| drops, repeat Step o withiﬁl playing
il .

e

T

noe role of




| Determine s by

I Min yg = yg

Y

'O . I;\ No Terminate: basic
\Je$ ¥ )—— .
\ : 7 sglutlon is optimal

Increase x ,
s

ad just

basic variables

=
/ . {Drop x »
—,— ":_'ﬁ 1= \ i ri
> Yes N
D-r p L = L e 3% J Y
‘YL Id" >t hs
e ~ b .
y bas veriabies

THEOREM 4, The iterative process is finlite.

PROCOF: The number of possible tasic sets is finite. Each one generated by
the process is different because of the decreases in xCx. But

this means the cyclic process must terminate.




CONCLUSICN:

Formula (lO) is the analog for quadratic programs of the familiar
adjusted objective function obteined by elimirnation of the basic variables
in linear programming. [For general convex objectives, it appears to be a
natural take-off for & quadratic fit.] If the coefficients y? of the xj are
non-negative, the solution is optimal. If not, a new basic solution for
system (11) is obtained by increasing xS corresponding to yg = Min yj.
Either ys drops out as basic variable or ys drops after a sequence of replace-
ments of basic variables xr by their correspondents yr. With the latter pro-
vision for a decrease in the dimensicnality of the solution, the algorithm
may be viewed as a direct extension of the regular simplex method to quadratic

programs (in contrast, the algorithms of Wolfe and Markowitz may be viewed as

paerametric extensions).
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